
CSE 451: Operating Systems

Winter 2026

Module 14

Windows MM

Gary Kimura

Memory Management (continued)

• Windows Paging
• Windows Kernel Heap
• Wickedly Fun Exam Question

Windows Page Frame State Diagram

Windows Page Frame State Diagram
Virtual
Address
Space

Page
Table,
etc.

MM,
PFN Data,

etc.

Hit

Miss

Windows Page Frame State Diagram

Page States
• Active (also called Valid)
• Transition

• Standby
• Modified
• Modified no-write

• Free
• Zeroed
• Rom
• Bad

Virtual
Address
Space

Page
Table,
etc.

MM,
PFN Data,

etc.

Hit

Miss

Windows Page Frame State Diagram
Virtual
Address
Space

Page
Table,
etc.

MM,
PFN Data,

etc.

Hit

Miss

Paging Features

• Local and Global page
replacement

• LRU on top of FIFO

• Hard and Soft page faults

Windows Kernel Pool (aka Heap)

• Boundary tagged (tried but rejected Fibonacci and buddy
system)

• Paged and Nonpaged (Once had Must Succeed)
• Lookaside lists
• Node type codes to help quickly identify objects in the pool

Overall Pool Layout

Debugging pool corruption

• Checked build versus Free build
• Debugging pool corruption bugs, often stale pointers or

allocation overruns
• 0xDEADBEEF and 0xBAADF00D
• Extra code to check for pool corruption
• A pointer hack I used to catch a bad actor (data alignment fault)

Pool Corruption

A Fun Exam Question from 2013

• Examine how long it takes a user mode program writing to an
array of integers.

• Assumptions
• The entire array will fit into physical memory (no paging)
• The system is pretty much idle except for this program

• First malloc() the array, and then
• Time how long it takes to write to every element of the array

using various access patterns.

The Actual Exam Question
Consider the following program that allocates a multi-megabyte sized array of unsigned longs, and then times how
long it takes to write to every array location. The program varies the pattern it uses to write to each array location
based on a stride that changes between each pass through the array.

For example a stride of 1 makes one pass through the array accessing locations 0,1,2,… until the end of the array is
reached. A stride of 2 makes two passes through the array, first accessing locations 0,2,4,… and then accessing
locations 1,3,5,… until the end of the array is reached. The program starts with a stride value of 1 and then increases
it, based on user input, until the stride is equal to half the size of the array. The program times how long it takes, in
seconds, for each new stride through the array.

The program takes three parameters, first is the number of megabytes to allocate to the array, the second and third
parameters are the multiplication and additive factors used to compute the stride. For example, the parameters “2 1 1”
allocate a 2MB array testing stride values of 1,2,3,4,…, 131072. Note that 131072 is the halfway point in a 2MB
integer array. The parameters “2 2 0” allocate a 2MB array testing stride values of 1,2,4,8,16,…,131072. In other
words the stride value doubles each time.

void main (int argc, char *argv[])
{

clock_t StartTime, EndTime;
unsigned long *Array, Size, StrideTimes, StridePlus, i,j,k;

sscanf(argv[1], "%lu", &Size);
sscanf(argv[2], "%lu", &StrideTimes);
sscanf(argv[4], "%lu", &StridePlus);

printf("Size = %luMB\n", Size);

// Allocate a test array
Size = 1024*1024*Size;
if ((Array = malloc(Size)) == NULL) {

printf("malloc failed\n");
return;

}
Size /= 4;

// Now test it for strides from 1 to size/2
printf(" Stride Seconds\n");
for (i = 1; i < Size/2; i = (i*StrideTimes)+StridePlus) {

printf("%8lu", i);
StartTime = clock();
for (j = 0; j < i; j++) {

for (k = j; k < Size; k += i) {
Array[k] = k;

}
}
EndTime = clock();
printf(", %8.3f\n", ((double)(EndTime - StartTime)/CLOCKS_PER_SEC));

}
}

What about calling free()
when the program exits?

Doubling stride each time

Stride

1

2

4

8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Size = 1024 MB
Stride Seconds Stride Seconds Stride Seconds

1, 1.920 512, 11.890 262144, 18.250

2, 1.560 1024, 12.190 524288, 14.710

4, 2.780 2048, 12.960 1048576, 9.810

8, 5.530 4096, 14.280 2097152, 5.310

16, 11.450 8192, 16.510 4194304, 4.100

32, 16.470 16384, 22.070 8388608, 3.820

64, 15.000 32768, 22.390 16777216, 3.760

128, 13.390 65536, 21.510 33554432, 2.170

256, 12.310 131072, 20.270 67108864, 1.170

This program was run on both Windows and Linux systems with 4GB of RAM. Here is the data for a run of “1024 2 0”
on a Linux system.

Two questions to answer

[20 points] Also notice how the time for each pass increases and then decreases as the stride values grow from 1 to
67108864. Both Windows and Linux exhibited this behavior. Please give a plausible explanation for this phenomenon
(it might be a mix of both hardware and software), and what the operating system can do to prevent it. You will need to
justify your answer.

[20 points] Notice how the first pass with a stride of 1 takes longer then the second pass with a stride of 2. This behavior
showed up consistently on Linux but not Windows. Please give a plausible explanation for what causes this
phenomenon (it might be a mix of both hardware and software), and what the operating system can do to prevent it. You
will need to justify your answer.

Illustration of data

0

5

10

15

20

25

Things to consider

• Zero pages – for question 1
• TLB behavior – for question 2
• Various cache levels and Cache line sizes – for the question not asked

about the big dip in the curve

Zero Pages

Zero Pages

TLB

TLB

• Most Efficient TLB access: every lookup is a TLB hit

• Least Efficient TLB access: every lookup is a TLB miss

TLB

Stride

1

2

4

8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Cache Levels and Cache lines size

Cache Levels and Cache lines size

0

5

10

15

20

25

Are we having fun yet?

• Now for a more interesting slightly harder problem

S t r i d e Seconds
S i z e

S t r i d e
= 6 4 M B
S e c o n d s S t r i d e Seconds

700, 0.109 726, 0 . 1 0 9 752, 0.124
701, 0.140 727, 0 . 1 0 9 753, 0.109
702, 0.093 728, 0 . 1 0 9 754, 0.109
703, 0.109 729, 0 . 1 0 9 755, 0.093

7 0 4 , 0 . 5 3 0 730, 0 . 1 0 9 756, 0.109
705, 0.109 731, 0 . 0 9 3 757, 0.109
706, 0.093 732, 0 . 1 0 9 758, 0.109
707, 0.109 733, 0 . 1 0 9 759, 0.109
708, 0.109 734, 0 . 1 0 9 760, 0.109
709, 0.109 735, 0 . 1 0 9 761, 0.109
710, 0.109 736, 0 . 1 4 0 762, 0.109
711, 0.109 737, 0 . 0 9 3 763, 0.109
712, 0.109 738, 0 . 1 2 4 764, 0.093
713, 0.109 739, 0 . 0 9 3 7 6 5 , 0 . 4 9 9

7 1 4 , 0 . 2 0 2 740, 0 . 1 0 9 766, 0.109
715, 0.109 7 4 1 , 0 . 2 4 9 7 6 7 , 0 . 1 0 9
716, 0.093 7 4 2 , 0 . 1 0 9 7 6 8 , 0 . 7 4 8
717, 0.109 743, 0 . 1 0 9 769, 0.109
718, 0.109 744, 0 . 1 0 9 770, 0.093
719, 0.093 745, 0 . 1 7 1 771, 0.124
720, 0.171 746, 0 . 1 0 9 772, 0.093
721, 0.093 747, 0 . 1 0 9 773, 0.109
722, 0.109 748, 0 . 1 0 9 774, 0.109
723, 0.109 7 4 9 , 0 . 4 0 5 775, 0.109
724, 0.093 750, 0 . 1 0 9 776, 0.124
725, 0.109 751, 0 . 0 9 3 777, 0.093

Now consider the same program run with “64 1 1”. The entire output is too long to include here, but the following is a
small section of the output that shows another anomaly that occurs on both Windows and Linux.

Increasing stride by 1 each time

Stride

1

2

3

4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Question to ponder

[20 points] Notice how the times are consistently in the low 100ms range except for an occasional blip in the 200ms to
700ms range. These blips have been underlined. Please offer an explanation for these blips. Your answer needs to offer a
plausible explanation of what is causing this anomaly (it might be a mix of both hardware and software), and what the
operating system can do to prevent it, if anything. You will need to justify your answer. If you do cannot offer an educated
guess on what causes this phenomenon explain what you could do to determine its cause.

Graph of data

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

700, 702, 704 706, 708, 710, 712, 714 716, 718, 720, 722, 724, 726, 728, 730, 732, 734, 736, 738, 740, 742 744, 746, 748, 750, 752, 754, 756, 758, 760, 762, 764, 766, 768 770, 772, 774, 776,

Things to consider

• Virtual and physical caches – doesn’t answer the question, but
good to know

• Page coloring – answers the question

Virtual and Physical caches

Virtual and Physical caches

• Is the tag of a virtual or physical nature?
• For example, a virtual address or a physical address.
• Another example, a cache of data in a file or physical disk sectors.
• Different behavioral characteristics

Page Coloring

Page Coloring

• Some caches are direct mapped

• For example, with a 1MB cache, physical address 0x0 maps to location 0
in the cache. So do locations 0x100000, 0x200000, 0x300000, etc

• One goal of MM is to spread out a process’s virtual address to not map
onto the same cache line

• For example, every page a process will not be mapped to frames that are
mapped to the same cache line

Page Coloring

Virtual Address Physical Memory

Cache
Tag data

0x0

0x4

0x8

0xc

In this example the RED tag
can be 0x0, 0x4, 0x8, or 0xc

Page Coloring (good mapping)

Virtual Address Physical Memory

Cache
Tag data

0x0

0x4

0x8

0xc

Page Coloring (poor mapping)

Virtual Address Physical Memory

Cache
Tag data

0x0

0x4

0x8

0xc

Deeper dive into page coloring

How does this answer the question?

• MM tries to make some assumptions about a program behavior when it
assigns a process’s pages to physical frames

• However the program, as demonstrated here, can pick a pattern that is
counter to that assignment

A “bad” stride can defeat even a good mapping

Virtual Address Physical Memory

Cache
Tag data

0x0

0x4

0x8

0xc

Final comment

• “Caches work great, except when they don’t.”

