CSE 451: Operating Systems
Winter 2026

Module 14
Windows MM

Gary Kimura

Memory Management (continued)

* Windows Paging
* Windows Kernel Heap
* Wickedly Fun Exam Question

Windows Page Frame State Diagram

Page read from
Derrard-zera disk or kernel
page faults allocations \
/ ROM

Standby page list

s

p Free Zero Zero Bad
focess page page page page
working list thread list list
sets
1
Warking set page list
replacerrent

Windows Page Frame State Diagram

Virtual
Address
Space

_I_I

Page read from

Derrard-zera disk or kernel
page faults allocations \

Standby
page list

ROM
page list

"Saft" Free Zero Zero Bad
page page page page page
faults list thread list list

1
Warking set page list
replacerrent

- MM,
PFN Data,
etc.

Virtual
Address
Space

_I_I

Miss

MM,

PFN Data,

etc.

Windows Page Frame State Diagram

Dermand-zero
page faults

1
Warking set

replacerrent

disk or kernel
allocations

Page read from

N

Standby
page list

Free Zero
page page
list thread

Zero

page
list

ROM
page list

Bad

page
list

Page States

Active (also called Valid)

* Transition

e Standby
* Modified
* Modified no-write
Free
Zeroed
Rom
Bad

Virtual

Address

Space

_I_I

Miss

MM,

PFN Data,

etc.

Windows Page Frame State Diagram

Dermand-zero
page faults

1
Warking set

replacerrent

Page read from

disk or kernel
allocations \

ROM
page list

Bad

page
list

Paging Features

* Local and Global page
replacement

* LRU on top of FIFO

* Hard and Soft page faults

Windows Kernel Pool (aka Heap)

* Boundary tagged (tried but rejected Fibonacci and buddy
system)

* Paged and Nonpaged (Once had Must Succeed)
* Lookaside lists
* Node type codes to help quickly identify objects in the pool

Overall Pool Layout

Debugging pool corruption

* Checked build versus Free build

* Debugging pool corruption bugs, often stale pointers or
allocation overruns

 OxDEADBEEF and OxBAADFOOD
* Extra code to check for pool corruption
* A pointer hack | used to catch a bad actor (data alignment fault)

Pool Corruption

A Fun Exam Question from 2013

* Examine how long it takes a user mode program writing to an
array of integers.

* Assumptions
* The entire array will fit into physical memory (no paging)
* The system is pretty much idle except for this program

* First malloc() the array, and then

* Time how long it takes to write to every element of the array
using various access patterns.

The Actual Exam Question

Consider the following program that allocates a multi-megabyte sized array of unsigned longs, and then times how
long it takes to write to every array location. The program varies the pattern it uses to write to each array location
based on a stride that changes between each pass through the array.

For example a stride of 1 makes one pass through the array accessing locations 0,1,2,... until the end of the array is
reached. A stride of 2 makes two passes through the array, first accessing locations 0,2,4,... and then accessing
locations 1,3,5,... until the end of the array is reached. The program starts with a stride value of 1 and then increases
it, based on user input, until the stride is equal to half the size of the array. The program times how long it takes, in
seconds, for each new stride through the array.

The program takes three parameters, first is the number of megabytes to allocate to the array, the second and third
parameters are the multiplication and additive factors used to compute the stride. For example, the parameters “2 1 1”
allocate a 2MB array testing stride values of 1,2,3,4,..., 131072. Note that 131072 is the halfway point in a 2MB
integer array. The parameters “2 2 0” allocate a 2MB array testing stride values of 1,2,4,8,16,...,131072. In other
words the stride value doubles each time.

void main (int argc, char *argv([])
{
clock t StartTime, EndTime;
unsigned long *Array, Size, StrideTimes, StridePlus, i,7J,k;

sscanf (argv[1l], "%lu", &Size);
sscanf (argv[2], "%lu", &StrideTimes);
sscanf (argv[4], "%lu", &StridePlus);

printf ("Size = %$1uMB\n", Size);

// Allocate a test array

Size = 1024*1024*Size;

if ((Array = malloc(Size)) == NULL) {
printf ("malloc failed\n");
return;

}

Size /= 4;

// Now test it for strides from 1 to size/2
printf (" Stride Seconds\n") ;
for (i = 1; i < Size/2; i = (i*StrideTimes)+StridePlus) {

printf ("$81u", 1i);:

StartTime = clock();

for (3 = 0; § < i; F++) {

for (k = j; k < Size; k += 1) {
Arrayl[k] = k;

}) What about calling free()
EndTime = clock(); when the program exits?

printf (", %8.3f\n", ((double) (EndTime - StartTime)/CLOCKS PER SEC));

Doubling stride each time

W0 1 2 13 14 |5 |6 |7 |8 |9 110 [11]12 113 [14 15]

This program was run on both Windows and Linux systems with 4GB of RAM. Here is the data for a run of “1024 2 0~
on a Linux system.

Size = 1024 MB

Srice Seconds Srice Seconds Srice Seconds
1, 1.920 512, 11.890 262144, 18.250
2, 1.560 1024, 12.190 524288, 14.710
4, 2.780 2048, 12.960 1048576, 9.810
8, 5.530 4096, 14.280 2097152, 5.310
16, 11.450 8192, 16.510 4194304, 4.100
32, 16.470 16384, 22.070 8388608, 3.820
64, 15.000 32768, 22.390 16777216, 3.760
128, 13.390 65536, 21.510 33554432, 2.170
256, 12.310 131072, 20.270 67108864, 1.170

Two questions to answer

[20 points] Notice how the first pass with a stride of 1 takes longer then the second pass with a stride of 2. This behavior
showed up consistently on Linux but not Windows. Please give a plausible explanation for what causes this
phenomenon (it might be a mix of both hardware and software), and what the operating system can do to prevent it. You

will need to justify your answer.

[20 points] Also notice how the time for each pass increases and then decreases as the stride values grow from 1 to
67108864. Both Windows and Linux exhibited this behavior. Please give a plausible explanation for this phenomenon
(it might be a mix of both hardware and software), and what the operating system can do to prevent it. You will need to

justify your answer.

25

20

15

10

Illustration of data

Things to consider

 Zero pages — for question 1
* TLB behavior — for question 2

* Various cache levels and Cache line sizes — for the question not asked
about the big dip in the curve

/ero Pages

/Zero Pages

Page read from

Derrard-zero disk or kernel
page faults allacations \
ROM
::;.edlg page list

)

page page page page
list thread list list

1
Warking set page list
replacerrent

TLB

TLB

* Most Efficient TLB access: every lookup is a TLB hit

* Least Efficient TLB access: every lookup is a TLB miss

TLB
W0 1 2 13 14 |5 |6 |7 |8 |9 110 [11]12 113 [14 15]

Cache Levels and Cache lines size

25

20

15

10

NA

Cache Levels and Cache lines size

A
(<)
[N

™
3
o)
e

Are we having fun yet?

* Now for a more interesting slightly harder problem

Now consider the same program run with “64 1 1”. The entire output is too long to include here, but the following is a
small section of the output that shows another anomaly that occurs on both Windows and Linux.

Size = 64MB

Stride Seconds Stride Seconds Stride Seconds
700, 0.109 726, 0.109 752, 0.124
701, 0.140 727, 0.109 753, 0.109
702, 0.093 728, 0.109 754, 0.109
703, 0.109 729, 0.109 755, 0.093
704, 0.530 730, 0.109 756, 0.109
705, 0.109 731, 0.093 757, 0.109
706, 0.093 732, 0.109 758, 0.109
707, 0.109 733, 0.109 759, 0.109
708, 0.109 734, 0.109 760, 0.109
709, 0.109 735, 0.109 761, 0.109
710, 0.109 736, 0.140 762, 0.109
711, 0.109 737, 0.093 763, 0.109
712, 0.109 738, 0.124 764, 0.093
713, 0.109 739, 0.093 765, 0.499
714, 0.202 740, 0.109 766, 0.109
715, 0.109 741, 0.249 767, 0.109
716, 0.093 742, 0.109 768, 0.748
717, 0.109 743, 0.109 769, 0.109
718, 0.109 744, 0.109 770, 0.093
719, 0.093 745, 0.171 771, 0.124
720, 0.171 746, 0.109 772, 0.093
721, 0.093 747, 0.109 773, 0.109
722, 0.109 748, 0.109 774, 0.109
723, 0.109 749, 0.405 775, 0.109
724, 0.093 750, 0.109 776, 0.124
725, 0.109 751, 0.093 777, 0.093

Increasing stride by 1 each time

W0 1 2 13 14 |5 |6 |7 |8 |9 110 [11]12 113 [14 15]

S— —t CP— e P o
3 ~— - . Py >
S— I — — S ™

Question to ponder

[20 points] Notice how the times are consistently in the low 100ms range except for an occasional blip in the 200ms to
700ms range. These blips have been underlined. Please offer an explanation for these blips. Your answer needs to offer a
plausible explanation of what is causing this anomaly (it might be a mix of both hardware and software), and what the
operating system can do to prevent it, if anything. You will need to justify your answer. If you do cannot offer an educated

guess on what causes this phenomenon explain what you could do to determine its cause.

0.800

0.700

0.600

0.500

0.400

0.300

0.200

0.100

0.000

Graph of data

A - — U

700, 702, 704 706, 708, 710, 712, 714 716, 718, 720, 722, 724, 726, 728, 730, 732, 734, 736, 738, 740, 742 744, 746, 748, 750, 752, 754, 756, 758, 760, 762, 764, 766, 768 770, 772, 774, 776,

Things to consider

* Virtual and physical caches — doesn’t answer the question, but
good to know

* Page coloring — answers the question

Virtual and Physical caches

Virtual and Physical caches

Is the tag of a virtual or physical nature?

For example, a virtual address or a physical address.

Another example, a cache of data in a file or physical disk sectors.
Different behavioral characteristics

Page Coloring

Page Coloring

Some caches are direct mapped

For example, with a 1MB cache, physical address 0x0O maps to location O
in the cache. So do locations 0x100000, 0x200000, 0x300000, etc

One goal of MM is to spread out a process’s virtual address to not map
onto the same cache line

For example, every page a process will not be mapped to frames that are
mapped to the same cache line

Virtual Address

Page Coloring

Physical Memory
0x0 [

0x4

0x8

Oxc

Cache
Tag data

In this example the - tag
can be 0x0, 0x4, 0x8, or Oxc

Page Coloring (good mapping)

Virtual Address Physical Memory

Page Coloring (poor mapping)

Virtual Address Physical Memory

OUNVU 7
Cache

Tag data

N

Deeper dive into page coloring

0x0000
0x1000
0x2000
0x3000
0x4000
0x5000

Virtual Memory Block 1

0x0000
0x1000
0%2000
0x3000
0x4000

0x10000 0x5000

0%11000 ‘ l 0x6000

0x12000 (0x7000

0x13000 3 (CPU Cache

0x14000 ‘

0x15000

0x16000

0x17000

Virtual Memory Block 2

Physical Memory

How does this answer the question?

* MM tries to make some assumptions about a program behavior when it
assigns a process’s pages to physical frames

* However the program, as demonstrated here, can pick a pattern that is
counter to that assignment

A “bad” stride can defeat even a good mapping

Virtual Address Physical Memory

0x0

Cache

Tag data

0x4.,

()
X
@

Oxc

Final comment

e “Caches work great, except when they don’t.”

